Preliminary communication

ÜBERGANGSMETALL-THIOKETEN-KOMPLEXE

X*. SYNTHESE UND STRUKTUR VON BIS(CYCLOPENTADIENYL)-(1,1,3,3-TETRAMETHYL-2-THIOCARBONYLCYCLOHEXAN)TITAN

KARSTEN SEITZ und ULRICH BEHRENS*

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (Bundesrepublik Deutschland) (Eingegangen den 9. April 1985)

Summary

The reaction of dicarbonyldicyclopentadienyltitan $[(C_5H_5)_2 Ti(CO)_2]$ with the thicketene 1,1,3,3-tetramethyl-2-thiccarbonylcyclohexane $[R_2C=C=S]$ leads to the monomeric complex $[(C_5H_5)_2 Ti(R_2C=C-S)]$ which contains an η^2 -(CS) bonded thicketene ligand as confirmed by X-ray analysis.

Dicarbonyl-bis(cyclopentadienyl)titan $[(C_5H_5)_2 \text{Ti}(CO)_2]$ reagiert mit Diphenylketen $[Ph_2C=C=O]$ zum η^2 -(CO)-koordinierten, dimeren Komplex I [2]. Wir fanden nun, dass das stabile Thioketen 1,1,3,3-Tetramethyl-2-thiocarbonylcyclohexan $[R_2C=C=S]$ (II) mit $(C_5H_5)_2 \text{Ti}(CO)_2$ ebenfalls zu einem η^2 -koordinierten Heteroallenkomplex IIIa reagiert. Im Gegensatz zum Keten-Komplex I tritt jedoch keine Dimerisierung ein. Damit erreicht das Titanatom nur eine 16-Elektronenkonfiguration.

Der Thioketen-Titan-Komplex IIIa bildet dunkelgrüne, plättchenförmige Kristalle. Sowohl in Lösung als auch im festen Zustand ist IIIa sehr luftempfindlich. Das ¹H-NMR-Spektrum (in C₆D₆; 90 MHz) weist für die Cyclopentadienylringe ein einziges Signal auf (δ 6.12 ppm). Wegen der raschen Sesselinversion werden im Cyclohexanring axiale und äquatoriale Positionen paarweise äquivalent, so dass nur zwei Singuletts (δ 0.20 und 1.50 ppm) für die Methylgruppen beobachtet werden. Die Resonanzen der Methylengruppen liegen als nicht aufgelöstes Multiplett im Bereich von 1.1 bis 1.6 ppm.

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

^{*}IX. Mitteilung siehe Ref. 1.

 $(\Pi a: M = Ti; \\ \Pi b: M = V)$

Röntgenographische Untersuchungen

Einkristalle von IIIa wurden durch Abkühlen einer gesättigten Lösung der Substanz in n-Hexan erhalten.

Kristalldaten von IIIa: C₂₁H₂₈STi, Kristallgrösse $0.2 \times 0.2 \times 0.05 \text{ mm}^3$, monoklin, Raumgruppe $P2_1/a$, a 1386.8(4), b 1568.7(5), c 1913.1(7) pm, β 109.40(2)°; V 3926(2) × 10⁶ pm³; Z = 8; d(ber.) 1.22 g cm⁻³; lin. Absorptionskoeff. μ 4.9 cm⁻¹.

Auf einem Syntex P2₁-Vierkreisdiffraktometer wurden bis $\theta \leq 20^{\circ}$ 1767 symmetrieunabhängige, signifikante Reflexe ($F_0 \geq 2\sigma(F_0)$, Mo- K_{α} -Strahlung, Graphitmonochromator, $\theta/2\theta$ -Scan) registriert. Die Struktur wurde mittels direkter Methoden gelöst. Die Kohlenstoffatome der Cyclopentadienylringe wurden unter Annahme von idealen Fünfringen verfeinert. Wasserstoffatomlagen wurden nicht berücksichtigt. Die anisotrope Verfeinerung konvergierte gegen R = 0.098 ($R_w = 0.089$; Gewichtung $w = [\sigma^2(F) + 0.002F^2]^{-1}$) (Programmsystem SHELX [3])*. Figur 1 zeigt eine ORTEP-Darstellung des Moleküls; in Tab. 1 sind ausgewählte Abstände und Winkel aufgeführt.

Die asymmetrische Einheit besteht aus zwei Molekülen, die sich nicht wesentlich voneinander unterscheiden. Aus diesem Grunde sind in Tab. 1 die Mittelwerte aufgeführt. Die Strukturbestimmung zeigt, dass ein monomerer Komplex vorliegt (16-Elektronenkonfiguration am Titan). Der entsprechende Diphenylketenkomplex I dagegen dimerisiert unter Ausbildung einer zusätzlichen, dativen O-Ti-Bindung, wodurch das Titanatom die Edelgaskonfiguration erreicht [2]. Die beiden C_5H_5 -Ringe sind um 15° aus der verdeckten Konformation herausgedreht und um 45.3° gegeneinander geneigt. Durch

^{*}Der vollständige Datensatz wurde beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter der Nr. CSD-51391 hinterlegt und kann von dort unter Angabe der Hinterlegungsnummer, der Autoren und des Zeitschriftenzitats angefordert werden.

Fig. 1. ORTEP-Darstellung von IIIa (Molekül A).

TABELLE 1

BINDUNGSLÄNGEN UND -WINKEL VON IIIa UND IIIb

Titankomplex IIIa		Analog gebauter Vanadiumkomplex IIIb [5]		
Bindungslängen (pm)				
Ti—S	240.0(6)	v—s	238.3(2)	
Ti-C(1)	214.7(11)	V-C(1)	214.8(5)	
SC(1)	173.5(15)	SC(1)	172.3(5)	
Ti-C(Cp) a	240.2(9)	V-C(Cp) a	229.9(4)	
TiCp	207.7(3)	VCp	197.3(1)	
C(1)-C(2)	133.5(13)	C(1)-C(2)	134.6(6)	
Bindungswinkel	(°)			
S-Ti-C(1)	44,5(3)	S-V-C(1)	44.3(1)	
Ti-S-C(1)	60.0(3)	V	60.6(2)	
Ti-C(1)S	75.5(4)	V-C(1)-S	75.1(2)	
Ti - C(1) - C(2)	151.0(11)	V-C(1)-C(2)	151.4(4)	
S-C(1)-C(2)	133.4(12)	S-C(1)-C(2)	133.5(4)	
Cp—Ti—Cp′	134.7	Cp-V-Cp'	136.4	

^a $Cp = C_s H_s$ (Mittelwerte).

die η^2 (CS)-Koordination des Thioketens wird das im freien Liganden lineare Heteroallensystem abgewinkelt (133.4(12)°). Eine noch stärkere Abwinkelung findet man im Diphenylketenkomplex I (128.8(3)°) [2]. Verbunden mit der η^2 -Koordination ist ferner eine starke Aufweitung des CS-Abstandes von 156.6(3) pm im freien Thioketen [4] auf 173.5(15) pm im Komplex IIIa.

Aufschlussreich ist ein Vergleich der Struktur des Titankomplexes IIIa mit dem analog gebauten Vanadiumkomplex IIIb [5], der sich vom Titankomplex nur durch ein zusätzliches Elektron unterscheidet. In Tab. 1 sind die wichtigsten Abstände und Winkel von beiden Komplexen nebeneinander aufgeführt. Erwartungsgemäss findet man im Titankomplex um 10 pm längere Metall-Cyclopentadienylring-Abstände wegen der unterschiedlichen kovalenten Radien beider Metalle (Kovalenzradien: Ti 132 pm, V 122 pm [6]). Diesen Trend beobachtet man jedoch nicht bei den Metall—C(1)- und Metall—S-Abständen, für die in beiden Komplexen annähernd gleiche Werte gefunden werden (siehe Tab. 1). Das zusätzliche Elektron tritt also beim Vanadiumkomplex in ein Orbital ein, das für die Metall—Thioketen-Bindung lockernd ist. Dieser Effekt ist allgemein für $(C_5H_5)_2ML_2$ -Komplexe (M = Ti, V) charakteristisch [7].

Experimenteller Teil

Unter N₂-Schutz gibt man zu einer Lösung von 0.58 g (2.5 mmol) (C₅H₅)₂Ti(CO)₂ [8] in 50 ml n-Hexan 0.60 g (3.3 mmol) 1,1,3,3-Tetramethyl-2-thiocarbonylcyclohexan [9] und rührt sechs Stunden lang bei 40°C. Dabei findet ein allmählicher Farbwechsel von Braun nach Dunkelgrün statt. Die Lösung wird filtriert, im Vakuum eingeengt und auf -35° C abgekühlt, wobei das Produkt in Form dunkelgrüner Plättchen auskristallisiert. Ausb. 0.44 g (1.2 mmol) (50%).

Schmp. 141°C (Zers.). Elementaranalyse: Gef. C, 69.80; H, 8.06; Molmasse 380 (vaporimetr.). $C_{21}H_{28}STi$ (360.4) ber. C, 69.98; H, 7.83%.

Dank. Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für Personal- und Sachmittel.

Literatur

- 1 H. Umland und U. Behrens, J. Organomet. Chem., 287 (1985) 109.
- 2 G. Fachinetti, C. Biran, C. Floriani, A. Chiesa-Villa und C. Guastini, J. Am. Chem. Soc., 100 (1978) 1921.
- 3 G. Sheldrick, SHELX: Programs for Crystal Structure Determination, Cambridge 1975.
- 4 E. Schaumann, S. Harto und G. Adiwidjaja, Chem. Ber., 112 (1979) 2698.
- 5 R. Drews, D. Wormsbacher und U. Behrens, J. Organomet. Chem., 272 (1984) C40.
- 6 L. Pauling, The Nature of the Chemical Bond, Third Ed., Cornwall University Press, Ithaca, New York, (1960) 256.
- 7 E.G. Muller, S.F. Watkins und L.F. Dahl, J. Organomet. Chem., 111 (1976) 73; E.G. Muller, J.L. Petersen und L.F. Dahl, J. Organomet. Chem., 111 (1976) 91; J.L. Petersen und L.F. Dahl, J. Am. Chem. Soc., 97 (1975) 6422.
- 8 B. Demersman, G. Bouquet und M. Bigorgne, J. Organomet. Chem., 101 (1975) C24.
- 9 E. Schaumann, Chem. Ber., 115 (1982) 2755.